Americas: +1-877-878-4784 | Europe: +353-1-525-3300 | Asia: +852-3188-9946
Home|Posts|General Physiology
  • MRHC Student Interviews

Excellence, Innovation, and Collaboration: Student Research at the MHRC

Cardiovascular, Interviews, Muscle Physiology, News, Videos|

This past April, we partnered with InsideScientific and the Muscle Health Research Centre (MHRC) at York University, a one-of-a-kind facility that fosters an interdisciplinary approach to the study of muscle physiology. We had the privilege of interviewing a number of faculty and students to highlight their research, as well as the opportunities provided to them by the MHRC.

  • Excellence, Innovation, and Collaboration: A Day at the MHRC with Arthur Cheng

Excellence, Innovation, and Collaboration: A Day at the MHRC with Arthur Cheng

Interviews, Muscle Physiology, News, Videos|

Interviewing Dr. Arthur Cheng at the Muscle Health Research Centre (MHRC), York University, an innovative research centre that facilitates the interdisciplinary study of muscle biology and the importance of skeletal muscle to the overall health and well-being of Canadians. Dr. Cheng's lab primarily investigates the mechanisms of skeletal muscle weakness and fatigue, and focuses on how calcium handling affects these mechanisms.

  • Excellence, Innovation, and Collaboration: A Day at the MHRC with Chris Perry

Excellence, Innovation, and Collaboration: A Day at the MHRC with Chris Perry

Interviews, Muscle Physiology, News, Videos|

Interviewing Dr. Christopher Perry at the Muscle Health Research Centre (MHRC), York University, an innovative research centre that facilitates the interdisciplinary study of muscle biology and the importance of skeletal muscle to the overall health and well-being of Canadians. Dr. Perry's lab studies metabolic dysregulation in murine models of muscle weakness disorders.

  • Talking Science with Chris Perry

Talking Real Science with Chris Perry

Interviews, Muscle Physiology, Videos|

Christopher Perry, PhD, an Associate Professor at York University with the School of Kinesiology & Health Science joined us to talk in detail about his career path that led him to study regulation of skeletal muscle metabolism. As a dedicated customer, Chris specifically highlights how the 1300A 3-in-1 Whole Animal System helps achieve his research goals.

Pharmacological Mitigation of Fibrosis in a Porcine Model of Volumetric Muscle Loss Injury

Volumetric muscle loss (VML) increases fibrotic tissue leading to deficits in function by interfering with a number of connections including neural, vascular and mechanical that complicate implementing regenerative therapeutics. In this paper, Corona et al. investigate muscle architecture and function after VML in Yorkshire Cross pigs to elucidate whether antifibrotic measures can lessen the accumulation of fibrosis and thus mitigate function deficits. Pigs (n = 10) were Randomly assigned to a sham or ~20% VML injury, then once again randomized to either nintedanib (anti-fibrotic agent) or no treatment for 30 days. In-vivo functional measurements of the anterior compartment, including maximum isometric torque, were made over the course of 30 days using Aurora’s 890A large animal apparatus in addition to tracking compartment volume and muscle stiffness. Further histological and molecular measurements of the muscle tissue were made following euthanizing of the animals. After 4-weeks following the VML injury, nontreated muscles showed a significant (23%) maximal torque deficit in contrast to sham. The affected area of the muscle was significantly stiffer (7-fold) in the VML-nontreated leg compared to the nintedanib treated legs. In addition, there was shown to be roughly 40% greater level of hydroxyproline per mg of muscle than the treated muscles. When taken together, the results show VML causes increased fibrosis and stiffness of the affected tissue. These resultant affects post VML can be lessened following antifibrotic treatment.

Recent Posts

Categories

Archives

Go to Top